Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12313/2668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStankova, Ivana-
dc.contributor.authorUseche, Andres F.-
dc.contributor.authorMeisel, Jose D.-
dc.contributor.authorMontes, Felipe-
dc.contributor.authorMorais, Lidia MO.-
dc.contributor.authorFriche, Amelia AL.-
dc.contributor.authorLangellier, Brent A.-
dc.contributor.authorHovman, Peter-
dc.contributor.authorSarmiento, Olga L.-
dc.contributor.authorHammond, Ross A.-
dc.contributor.authorDiez Roux, Ana V.-
dc.date.accessioned2022-03-30T16:35:02Z-
dc.date.available2022-03-30T16:35:02Z-
dc.date.issued2021-08-17-
dc.identifier.citationtankov, I., Useche, A. F., Meisel, J. D., Montes, F., Morais, L. M., Friche, A. A., . . . Diez Roux, A. V. (2021). Using cause-effect graphs to elicit expert knowledge for cross-impact balance analysis. MethodsX, 8 doi:10.1016/j.mex.2021.101492es_CO
dc.identifier.issn2215-0161-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2215016121002855-
dc.description.abstractRoss-impact balance (CIB) analysis leverages expert knowledge pertaining to the nature and strength of relationships between components of a system to identify the most plausible future ‘scenarios’ of the system. These scenarios, also referred to as ‘storylines’, provide qualitative insights into how the state of one factor can either promote or restrict the future state of one or multiple other factors in the system. This paper presents a novel, visually oriented questionnaire developed to elicit expert knowledge about the relationships between key factors in a system, for the purpose of CIB analysis. The questionnaire requires experts to make selections from a series of standardized cause-effect graphical profiles that depict a range of linear and non-linear relationships between factor pairs. The questionnaire and the process of translating the graphical selections into data that can be used for CIB analysis is described using an applied example which focuses on urban health in Latin American cities. • A questionnaire featuring a set of standardized cause-effect profiles was developed. • Cause-effect profiles were used to elicit information about the strength of linear and non-linear bivariate relationships. • The questionnaire represents an intuitive visual means for collecting data required for the conduct of CIB analysis.es_CO
dc.description.sponsorshipUniversidad de Ibaguées_CO
dc.language.isoenes_CO
dc.publisherMethodsXes_CO
dc.subjectComplex Systemses_CO
dc.subjectSystems thinkinges_CO
dc.subjectScenario analysises_CO
dc.subjectEpidemiologyes_CO
dc.subjectUrban Healthes_CO
dc.subjectChronic diseasees_CO
dc.subjectFood environmentes_CO
dc.subjectDietes_CO
dc.subjectTransportation systemes_CO
dc.titleUsing cause-effect graphs to elicit expert knowledge for cross-impact balance analysises_CO
dc.typeArticlees_CO
eperson.emailjose.meisel@unibague.edu.coes_CO
eperson.emailjose.meisel@unibague.edu.coes_CO
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.



Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.