Publicación:
Evaluación de la producción hídrica en disponibilidad de agua en el río Saldaña en el departamento del Tolima

dc.contributor.advisorPeña Rojas, Luis Eduardoes-CO
dc.contributor.authorRodríguez, Luis Davides_CO
dc.creator.degreeIngeniero Civiles-CO
dc.date.accessioned2019-05-23T19:14:58Z
dc.date.available2019-05-23T19:14:58Z
dc.date.issued2018
dc.descriptionLa evaluación de la disponibilidad hídrica ha cobrado relevancia considerando los efectos del cambio climático sobre la producción hídrica de las cuencas hidrográficas. De manera la estimación de los caudales disponibles en corrientes hídricas superficiales se basa en la implementación de modelos hidrológicos, lo cual implica disponer de gran cantidad de información que en muchos casos no se encuentra disponible. Por lo tanto, los objetivos de esta propuesta son: i) modelar la hidrología de la cuenca del río Saldaña en Sur-América y ii) evaluar la producción hídrica de la cuenca en escenarios de cambio climático. Para tal fin, se aplicó la conceptualización del modelo hidrológico TETIS de forma agregada para la modelación hidrológica con resolución temporal diaria y para la escala mensual, se aplicó el modelo abcd. Se plantearon escenarios de simulación basados en las proyecciones del Intergovernmental Panel on Climate Change (IPCC), de manera que de esta forma fue posible evaluar el efecto del cambio climático sobre la disponibilidad de agua en la cuenca. Los resultados obtenidos demuestran el potencial de la implementación de modelos agregados en el proceso de estimación de la oferta hídrica y procesos de planificación de medidas de adaptación al cambio climático.es_CO
dc.description.abstractThe assessment of water availability has become relevant considering the effects of climate change on water production in river basins. The estimation of available flows in surface water flows is based on the implementation of hydrological models, which implies having a large amount of information that in many cases is not available. Therefore, the objectives of this proposal are: i) to model the hydrology of the Saldaña river basin in South America and ii) to evaluate the water production of the basin in climate change scenarios. For this purpose, the conceptualization of the hydrological model TETIS was applied in an aggregate way for the hydrological modeling with daily temporal resolution and for the monthly scale, the abcd model was applied. Simulation scenarios based on the projections of the Intergovernmental Panel on Climate Change (IPCC) were proposed, so that it was possible to evaluate the effect of climate change on water availability in the basin. The results obtained demonstrate the potential of the implementation of aggregated models in the process of estimating water supply and planning processes of adaptation measures to climate change.Eng_USA
dc.formatApplication/pdfEng_USA
dc.identifier.citationRodríguez, L.D. (2018). Evaluación de la producción hídrica en disponibilidad de agua en el río Saldaña en el departamento del Tolima. [Tesis pregrado, Universidad de Ibagué]. http://repositorio.unibague.edu.co:80/jspui/handle/20.500.12313/944es_CO
dc.identifier.urihttps://hdl.handle.net/20.500.12313/944
dc.language.isoeses_CO
dc.publisherUniversidad de Ibaguées_CO
dc.publisher.departmentFacultad de Ingenieríaes-CO
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International LicenseEng_USA
dc.rights.licenseManifiesto(amos) que el documento objeto de esta autorización es de mi(nuestra) exclusiva autoría, tengo(emos) la titularidad plena sobre él y el mismo fue elaborado sin quebrantar ni suplantar los derechos de autor de terceros. En caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el mismo, asumiré(mos) la responsabilidad total, y saldré(mos) en defensa de los derechos aquí autorizados a la Universidad de Ibagué; por tanto, para todos los efectos, la Universidad de Ibagué actúa como un tercero de buena fe. Esta autorización no implica renunciar al derecho que tengo(emos) de publicar total o parcialmente el documento. Toda persona que consulte el documento, ya sea en la biblioteca o el medio electrónico en donde sea reproducido, podrá copiar apartes del texto, siempre y cuando cite la fuente, es decir el título del documento y a mí(nosotros) como su(s) autor(es).es-CO
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectProducción hídricaes_CO
dc.subjectRío Saldañaes_CO
dc.subjectCuencas hidrográficases_CO
dc.subjectCambio climáticoes_CO
dc.subject.keywordWater productionEng_USA
dc.subject.keywordSaldaña riverEng_USA
dc.subject.keywordHifrographic basinsEng_USA
dc.subject.keywordClimate changeEng_USA
dc.titleEvaluación de la producción hídrica en disponibilidad de agua en el río Saldaña en el departamento del Tolimaes_CO
dc.title.alternativeWater yield simulation in climate change scenarios based on dumped hydrological modeles_CO
dc.typeBachelor ThesisEng_USA
dc.typeTesis de pregrado (Modalidad asistencia de Investigación)es-CO
dcterms.bibliographicCitationAhn, K. H., Merwade, V., Ojha, C. S. P., & Palmer, R. N. (2016). Quantifying relative uncertainties in the detection and attribution of human-induced climate change on winter streamflow. Journal of Hydrology, 542, 304–316. https://doi.org/10.1016/j.jhydrol.2016.09.015
dcterms.bibliographicCitationAlaoui, A., Willimann, E., Jasper, K., Felder, G., Herger, F., Magnusson, J., & Weingartner, R. (2014). Modelling the effects of land use and climate changes on hydrology in the Ursern Valley, Switzerland. Hydrological Processes, 28(10), 3602–3614. https://doi.org/10.1002/hyp.9895
dcterms.bibliographicCitationAlley, W. M. (1984). On the Treatment of Evapotranspirationm Soil Moisture Accounting, and Aquifer Recharge in Monthly Water Balance Models. Water Resources Research, 20(8), 1137–1149. https://doi.org/10.1029/WR020i008p01137
dcterms.bibliographicCitationAmaya, G., Restrepo, C., & David, O. (2009). Modelación del comportamiento hidrológico de tres cuencas en el Urabá Antioqueño - Colombia. Avances En Recursos Hidráulicos, 19, 21–38. https://doi.org/10.1017/CBO9781107415324.004
dcterms.bibliographicCitationAntonio-Fragala, F., & Obregón-Neira, N. (2011a). Estimación de la recarga media anual en los acuíferos de la sabana de bogotá. Ingenieria Y Universidad, 15(1), 145–169.
dcterms.bibliographicCitationAntonio-Fragala, F., & Obregón-Neira, N. (2011b). Estimación de la recarga media anual en los acuíferos de la sabana de Bogotá TT - Recharge Estimation in Aquifers of the Bogota Savannah TT - Estimativa do reabastecimento médio anual em los aquíferos da savana de Bogotá. Ingeniería Y Universidad, 15(1), 145–169. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-21262011000100009&lang=pt%5Cnhttp://www.scielo.org.co/pdf/inun/v15n1/v15n1a09.pd
dcterms.bibliographicCitationBai, P., Liu, X., Liang, K., & Liu, C. (2015). Comparison of performance of twelve monthly water balance models in different climatic catchments of China. Journal of Hydrology, 529, 1030–1040. https://doi.org/10.1016/j.jhydrol.2015.09.015
dcterms.bibliographicCitationBarco, J., Cuartas, A., Mesa, O., Poveda, G., Vélez, J. ., Mantilla, R., … Montoya, M. (2000). Estimación de la evaporación en Colombia. Avances En Recursos Hidráulicos.
dcterms.bibliographicCitationBarrios, M., & Francés, F. (2011). Estudio del efecto de escala espacial en un modelo hidrológico distribuido.
dcterms.bibliographicCitationBeniston, M. (2012). Impacts of climatic change on water and associated economic activities in the Swiss Alps. Journal of Hydrology, 412–413, 291–296. https://doi.org/10.1016/j.jhydrol.2010.06.046
dcterms.bibliographicCitationBormann, H., Breuer, L., Gräff, T., Huisman, J. A., & Croke, B. (2009). Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) IV: Model sensitivity to data aggregation and spatial (re-)distribution. Advances in Water Resources, 32(2), 171–192. https://doi.org/10.1016/j.advwatres.2008.01.002
dcterms.bibliographicCitationBronstert, A. (2003). Floods and climate change: Interactions and impacts. Risk Analysis, 23(3), 545–557. https://doi.org/10.1111/1539-6924.00335
dcterms.bibliographicCitationBronstert, A., Niehoff, D., & Brger, G. (2002). Effects of climate and land-use change on storm runoff generation: Present knowledge and modelling capabilities. Hydrological Processes, 16(2), 509–529. https://doi.org/10.1002/hyp.326
dcterms.bibliographicCitationCarpenter, T. M., & Georgakakos, K. P. (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 329(1–2), 174–185. https://doi.org/10.1016/j.jhydrol.2006.02.013
dcterms.bibliographicCitationCeola, S., Montanari, A., Krueger, T., Dyer, F., Kreibich, H., Westerberg, I., … Kreibich, H. (2016). Adaptation of water resources systems to changing society and environment : a statement by the International Association of Hydrological Sciences. Hydrological Sciences Journal, 61(16), 2803–2817. https://doi.org/10.1080/02626667.2016.1230674
dcterms.bibliographicCitationChang, H., & Franczyk, J. (2008). Climate change, land-use change, and floods: Toward an integrated assessment. Geography Compass, 2(5), 1549–1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x
dcterms.bibliographicCitationCorrea Pimienta, A. M., & Díaz Castañeda, C. H. (2005). Implementación del modelo de Thomas para el balance hídrico empleando la herramienta computacional HidroSIG - Java. Pontificia Universidad Javeriana -Bogotá-Colombia, 175. Retrieved from http://hermes.javeriana.edu.co/biblos/tesis/ingenieria/tesis120.pdf
dcterms.bibliographicCitationCORTOLIMA. (2012). Acciones Verdes Tolima Ambiental, 1–16.
dcterms.bibliographicCitationElfert, S., & Bormann, H. (2010). Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland “Hunte” catchment. Journal of Hydrology, 383(3–4), 245–255. https://doi.org/10.1016/j.jhydrol.2009.12.040
dcterms.bibliographicCitationElsanabary, M. H., & Gan, T. Y. (2015). Evaluation of climate anomalies impacts on the Upper Blue Nile Basin in Ethiopia using a distributed and a lumped hydrologic model. Journal of Hydrology, 530, 225–240. https://doi.org/10.1016/j.jhydrol.2015.09.052
dcterms.bibliographicCitationFernandez, W., Vogel, R. M., & Sankarasubramanian, a. (2000). Regional calibration of a watershed model. Hydrological Sciences Journal, 45(5), 689–707. https://doi.org/10.1080/02626660009492371
dcterms.bibliographicCitationFrancés, F., Blöschl, G., & Bronstert, A. (2008). Efficiency of non-structural flood mitigation measures: “room for the river” and “retaining water in the landscape.” London. United Kingdom.
dcterms.bibliographicCitationFrancisco Martínez, P., & Martínez P, J. M. (2012). Evaluación de recursos hídricos en la cabecera del Segura utilizando modelos agregados de balance.
dcterms.bibliographicCitationGaravaglia, F., Le Lay, M., Gottardi, F., Garçon, R., Gailhard, J., Paquet, E., & Mathevet, T. (2017). Impact of model structure on flow simulation and hydrological realism: From a lumped to a semi-distributed approach. Hydrology and Earth System Sciences, 21(8), 3937–3952. https://doi.org/10.5194/hess-21-3937-2017
dcterms.bibliographicCitationGhaffari, G., Keesstra, S., Ghodousi, J., & Ahmadi, H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological Processes, 24, 892–903. https://doi.org/10.1002/hyp.7530
dcterms.bibliographicCitationGocic, M., & Trajkovic, S. (2013). Analysis of precipitation and drought data in Serbia over the period 1980-2010. Journal of Hydrology, 494, 32–42. https://doi.org/10.1016/j.jhydrol.2013.04.044
dcterms.bibliographicCitationGuo, S., Wang, J., Xiong, L., Ying, A., & Li, D. (2002). A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology, 268(1–4), 1–15. https://doi.org/10.1016/S0022-1694(02)00075-6
dcterms.bibliographicCitationHoeffding, W. (1948). A Class of Statistics with Asymptotically Normal Distribution (Vol. 19). https://doi.org/10.1214/09-STS284
dcterms.bibliographicCitationHuisman, J. A., Breuer, L., Bormann, H., Bronstert, A., Croke, B. F. W., Frede, H. G., … Willems, P. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Advances in Water Resources, 32(2), 159–170. https://doi.org/10.1016/j.advwatres.2008.06.009
dcterms.bibliographicCitationIDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2015a). Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100 Herramientas Científicas para la Toma de Decisiones – Estudio Técnico Completo : Tercera Comunicación Nacional de Cambio Climático.
dcterms.bibliographicCitationIDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2015b). Nuevos escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Cientìficas para la Toma de Decisiones - Enfoque Nacional - Departamental: Tercera Comunicación Nacional de Cambio Climático. https://doi.org/10.1186/1471-2156-13-58
dcterms.bibliographicCitationIDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2015c). Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Científicas para la Toma de Decisiones – Enfoque Nacional - Regional: Tercera Comunicación Nacional de Cambio Climático. Journal of Chemical Information and Modeling, 21930, 40. https://doi.org/10.1017/CBO9781107415324.004
dcterms.bibliographicCitationJaime, I. V, Mesa, O. J., Cuartas, A., Mantilla, R. I., Mej, J. F., Hoyos, C. D., … Montoya, M. I. (2007). Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia. Journal of Hydrologic Engineering, 12(1), 4–13. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4)
dcterms.bibliographicCitationJha, A., Bloch, R., & Lamond, J. (2011). A Guide to Integrated Urban Flood Risk Management for the 21st Century.
dcterms.bibliographicCitationKendall, M. G. (1975). Rank Correlation Methods. London Griffin.
dcterms.bibliographicCitationKrause, S., Jacobs, J., & Bronstert, A. (2007). Modelling the impacts of land-use and drainage density on the water balance of a lowland-floodplain landscape in northeast Germany. Ecological Modelling, 200(3–4), 475–492. https://doi.org/10.1016/j.ecolmodel.2006.08.015
dcterms.bibliographicCitationLavado, W., Labat, D., Loup, J., Ardoin-Bardin, S., & Ordoñes, J. (2011). Modelos de balance hídrico mensual en la cuenca hidrográfica del Amazonas en Perú : cuenca del río Ucayali. Revista Peruana Geo-Atmosfera RPGA, 3(3), 82–94.
dcterms.bibliographicCitationLørup, J. K., Refsgaard, J. C., & Mazvimavi, D. (1998). Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling : Case studies from Zimbabwe. Journal of Hydrology, 205, 147–163.
dcterms.bibliographicCitationMann, H. B. (1945). Nonparametric Tests Against Trend (Vol. 13). Retrieved from http://www.jstor.org/stable/1907187
dcterms.bibliographicCitationMaurer, E. P., Brekke, L. D., & Pruitt, T. (2010). Contrasting lumped and distributed hydrology models for estimating climate change impacts on California watersheds. Journal of the American Water Resources Association, 46(5), 1024–1035. https://doi.org/10.1111/j.1752-1688.2010.00473.x
dcterms.bibliographicCitationMedici, C., Butturini, A., Bernal, S., Sabater, F., & Franc, F. (2008). Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment, 3828(April), 3814–3828. https://doi.org/10.1002/hyp
dcterms.bibliographicCitationMinville, M., Brissette, F., & Leconte, R. (2008). Uncertainty of the impact of climate change on the hydrology of a nordic watershed. Journal of Hydrology, 358(1–2), 70–83. https://doi.org/10.1016/j.jhydrol.2008.05.033
dcterms.bibliographicCitationMoriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
dcterms.bibliographicCitationNajafi, M. R., Moradkhani, H., & Jung, I. W. (2011). Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25(18), 2814–2826. https://doi.org/10.1002/hyp.8043
dcterms.bibliographicCitationO’Connell, P. E., Ewen, J., O’Donnell, G., & Quinn, P. (2007). Is there a link between agricultural land-use management and flooding? Hydrology and Earth System Sciences, 11(1), 96–107. https://doi.org/10.5194/hess-11-96-2007
dcterms.bibliographicCitationPeña, L. E., Barrios, M., & Francés, F. (2016). Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. Journal of Hydrology, 541, 1258–1272. https://doi.org/10.1016/j.jhydrol.2016.08.031
dcterms.bibliographicCitationPfister, L., Kwadijk, J., Musy, A., Bronstert, A., & Hoffmann, L. (2004). Climate change, land use change and runoff prediction in the Rhine-Meuse basins. River Research and Applications, 20(3), 229–241. https://doi.org/10.1002/rra.775
dcterms.bibliographicCitationRefsgaard, J. C., & Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202. https://doi.org/10.1029/96WR00896
dcterms.bibliographicCitationRuiz-Pérez, G., Medici, C., Latron, J., Llorens, P., Gallart, F., & Francés, F. (2016). Investigating the behaviour of a small Mediterranean catchment using three different hydrological models as hypotheses. Hydrological Processes, 30(13), 2050–2062. https://doi.org/10.1002/hyp.10738
dcterms.bibliographicCitationSaxton, K., & Rawls, W. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569–1578. https://doi.org/10.2136/sssaj2005.0117
dcterms.bibliographicCitationStehr, a., Aguayo, M., Link, O., Parra, O., Romero, F., & Alcayaga, H. (2010). Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences, 14(10), 1963–1977. https://doi.org/10.5194/hess-14-1963-2010
dcterms.bibliographicCitationStéphenne, N., & Lambin, E. F. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems & Environment, 85, 145–161.
dcterms.bibliographicCitationThomas, H. A. (1981). Improved Methods for National Water Assessment. Water Resources Contract: WR15249270, 59.
dcterms.bibliographicCitationThomas, H. A., Marin, C. M., Brown, M. J. & F., & Fiering, M. B. (1983). Methodology for water resource assessment. Report NTIS 84-124163, to US Geological Survey, National. Tech. Info. Serv., Springfield, Virginia, USA.
dcterms.bibliographicCitationTurc, L. (1955). Le bilan de l“aue des sols.‖ Relations entre les precipitations, l”evaporation et l’ecoulement,. INRA, Paris, French.
dcterms.bibliographicCitationTurc, L. (1962). Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron, 12, 13–49.
dcterms.bibliographicCitationVansteenkiste, T., Tavakoli, M., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., & Willems, P. (2014). Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, 511, 335–349. https://doi.org/10.1016/j.jhydrol.2014.01.050
dcterms.bibliographicCitationWang, Q. J., Pagano, T. C., Zhou, S. L., Hapuarachchi, H. A. P., Zhang, L., & Robertson, D. E. (2011). Monthly versus daily water balance models in simulating monthly runoff. Journal of Hydrology, 404(3–4), 166–175. https://doi.org/10.1016/j.jhydrol.2011.04.027
dcterms.bibliographicCitationWard, P. J., Renssen, H., Aerts, J. C. J. H., van Balen, R. T., & Vandenberghe, J. (2007). Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences Discussions, 4(4), 2521–2560. https://doi.org/10.5194/hessd-4-2521-2007
dcterms.bibliographicCitationWheater, H., Reynolds, B., Mcintyre, N., Marshall, M., & Jackson, B. (2008). Impacts of Upland Land Management on Flood Risk: Multi-scale Modelling Methodology and Resutls from the Pontbren Experiment UR16. Manchester, Uk.
dcterms.bibliographicCitationXu, C. (1999). Climate Change and Hydrologic Models : A Review of Existing Gaps and Recent Research Developments. Water Resources Management, 13, 369–382. https://doi.org/10.1023/A:1008190900459
dspace.entity.typePublication
eperson.emailbiblioteca@unibague.edu.co
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
1.49 MB
Formato:
Adobe Portable Document Format
Descripción: